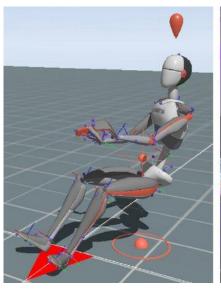


Motion Lab – Projekt: "Doctor, when can I drive?"

Dr. med. Dominique Schöps
Dr. med. Falk Hilsmann
Leitung:
PD Dr. med. David Latz

Klinik für Orthopädie und Unfallchirurgie Universitätsklinikum Düsseldorf Komm. Direktor: Univ. Prof. Dr. U. Maus



Es liegt kein Interessenskonflikt vor

Das Motion – Lab Universitätsklinikum Düsseldorf

- Elektrogoniometrisches Bewegungsanalysesystem der Firma Biometrics (Biometrics Ltd., United Kingdom)
- Motion Capturing System der Firma XSens (XSens, The Netherlands).
- Vollausgestatteter PKW Fahrsimulator der Firma Foerst (Foerst GmbH, Deutschland)

Das Team

Projektleitung

PD Dr. med David Latz

PD Dr. med Erik Schiffner

Dr. med. Felix Nikolaus Lakomek Assistenzarzt

Dr. med. Max Prost

Dr. med. Dominique Schöps

Fachärztin für Orthopädie und Unfallchirurgie

Relevanz

In Deutschland werden:

- 3/4 aller Personenkilometer mit dem motorisierten Individualverkehr zurückgelegt
- 2/3 aller Dienstwege mit dem PKW zurückgelegt.

Relevanz

"Doctor, when can I drive...?"

Relevanz

Trotzdem gibt es bisher keine klaren, transparenten und reproduzierbaren Leitlinien für das Fachgebiet Orthopädie und Unfallchirurgie bei Patienten mit Beeinträchtigungen (Immobilisation, Kraftgradminderungen)

Definition

Fahreignung - Geeignet zum Führen von Kraftfahrzeugen ist, wer die notwendigen körperlichen und geistigen Anforderungen erfüllt und nicht erheblich oder nicht wiederholt gegen verkehrsrechtliche Vorschriften oder gegen Strafgesetze verstoßen hat

Fahrtüchtigkeit - Bezeichnet die zeitliche und situationsabhängige Fähigkeit zum Lenken eines Fahrzeuges im Straßenverkehr. Sie kann durch physische und psychische Faktoren beeinflusst werden.

Beurteilung der Fahreignung

Begutachtungsleitlinien zur Kraftfahreignung bearbeitet von Dr. med. Nicole Gräcmann Dr. med. Martina Albrecht Bundesanstalt für Straßenwesen Berichte der Bundesanstalt für Straßenwesen Mensch und Sicherheit Heft M 115

18

Gültig ab: 1. Februar 2000

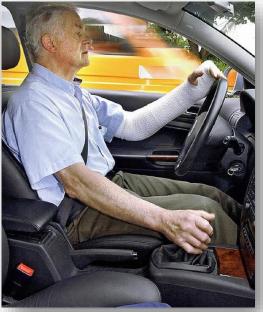
3.3 Bewegungsbehinderungen

Auf Vorschlag des Verbandes der Technischen Überwachungsvereine (Merkblatt VdTÜV Kraftfahrwesen 745, Ausgabe 11.99 "Sicherheitsmaßnahmen bei körperbehinderten Kraftfahrern") sind spezielle Anforderungen an die Anpassung am Fahrzeug oder an orthopädischen Hilfsmitteln zu stellen. Diese Anforderungen sind im Anhang B aufgeführt. Nach der FeV werden die medizinisch-psychologischen Untersuchungen in der Begutachtungsstelle für Fahreignung (§ 66 FeV), früher amtlich anerkannte Medizinisch-Psychologische Untersuchungsstelle, durchgeführt. Das fachärztlichorthopädische oder chirurgische Gutachten soll Aussagen über Prothesenverträglichkeit, Stumpfverhältnisse, Belastbarkeit der betroffenen Gliedmaßen bzw. der Prothesen, eventuelle Auswirkungen bei Langzeitbelastung, Restfunktionen bei Teillähmung und dergleichen enthalten.

Bei der Beurteilung der Bewegungsbehinderungen sind auch die Kapitel 3.9.1 (Erkrankungen und Folgen von Verletzungen des Rückenmarks) bis 3.9.3 (Parkinsonsche Krankheit, Parkinsonismus und andere extrapyramidale Erkrankungen einschließlich zerebellarer Syndrome) zu beachten.

Im Zweifel:

Kfz Sachverständiger


Fahrprüfung

Beurteilung Fahrtüchtigkeit - Wie sehen die Patienten das?

- Unsicherheit bezüglich der aktuellen Rechtsgrundlage (60% aller Patienten)
- 55,6% denken die Entscheidungsverantwortung liegt beim behandelnden Arzt
- Nutzung des Kraftfahrzeuges trotz Immobilisation (Gips, Orthese etc.) aufgrund von beruflichen und privaten Verpflichtungen
- Bei Distorsionen & Bandverletzungen führen viele Patienten weiterhin das Kfz, bei schweren Verletzungen (Frakturen o.Ä.) wird dies eher vermieden

Doctor, when can I drive? Charakterisierung des Fahrverhaltens orthopädischer und unfallchirurgischer Patienten anhand einer prospektiven Fragebogenstudie

Felix Lakomek¹ · Falk Hilsmann¹ · Erik Schiffner¹ · Sebastian Gehrmann² · Dominique Schöps¹ · Max Prost¹ · Joachim Windolf¹ · David Latz¹

Klinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland

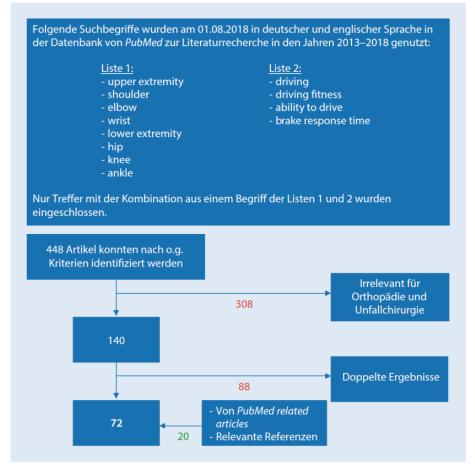
2 Klinik für Orthopädie und Unfallchirurgie, Karl-Leisner-Klinikum Kleve, Kleve, Deutschland

→ Einheitliche Leitlinie fehlt

Erste Forschungsarbeit "Doctor, when can i drive?"

D. Latz · E. Schiffner¹ · J. Schneppendahl · B. H. Thalmann · P. Jungbluth · J. Grassmann · J. Windolf · S. V. Gehrmann

¹ Klinik für Unfall- und Handchirurgie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland


Empfehlungen zur Fahrtauglichkeit bei Erkrankungen des Bewegungs- und Stützapparates

Ein systematisches Review

Systematische Übersichtsarbeit

Abb. 1 ▲ Algorithmus zur Auswahl relevanter Studien des Reviews

Obere Extremität

- Keine klaren Empfehlungen
- Keine systematische Einteilung
- Keine standardisierten Tests
- Studien basieren auf retrospektiven Erfahrungswerten

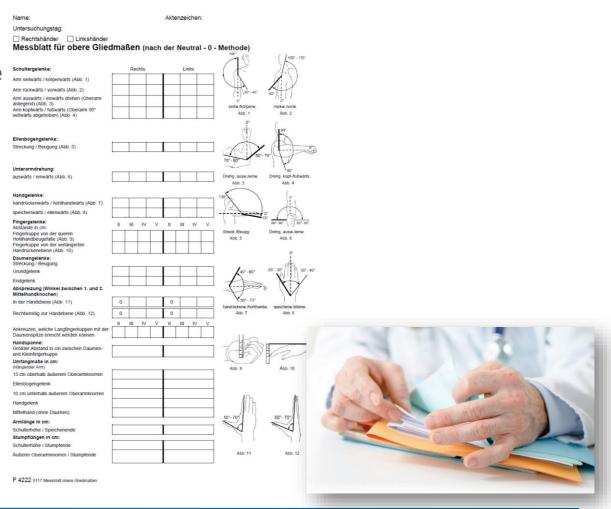
len
nate*
en*
ten*
*
hen*
chen*
en*
1

Untere Extremität

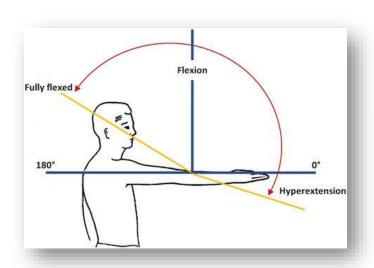
Zur Beurteilung wird in der Regel genutzt:

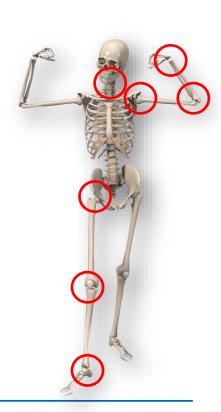
- Bremsreaktionszeit (break response time, 750ms)
- Bremskraft (brake force, 100N)

Untere Extremität	Jahrtauglichke't
Sprunggelenksbandage	möglich
Sprunggelenk stabilisierende Orthese	möglich
Walker mit einstellbarem Gelenk	nicht empfohlen
Kniebandage	möglich
Patellofemorale Bandage	möglich
Knie Hartrahmenorthese	nicht empfohlen
Hüftbandage	möglich
Hüftorthese	möglich
Oberschenkelgips	nicht empfohlen
Unterschenkelgips	nicht empfohlen
Arthrose Hüftgelenk	individuell
Arthrose Kniegelenk	individuell
Z.n. Hüft Totalendoprothese	nach 2-6 Wochen
Z.n. Knie Totalendoprothese	nach 2-6 Wochen
Z.n. Hüftarthroskopie	nach 2 Wochen
Z.n. Kniearthroskopie	nach 1 Woche
Z.n. Sprunggelenksarthroskopie	nach 2 Wochen
Z.n. Vorderer Kreuzbandplastik rechts	nach 3-6 Wochen
Z.n. Vorderer Kreuzbandplastik links	nach 2 Wochen
Z.n. Hallux Valgus OP	nach 8 Wochen
Schaft- und Gelenkfrakturen untere Extremität	6 Wochen nach
	Vollbelastung


→ Einheitliche, transparente und reproduzierbare Beurteilungskriterien müssen her! Aber wie?

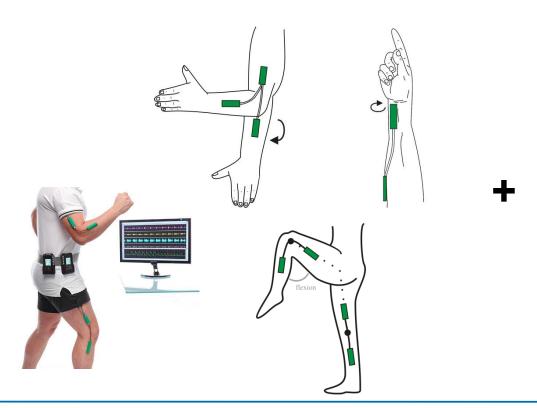
In Analogie zum Gutachten:

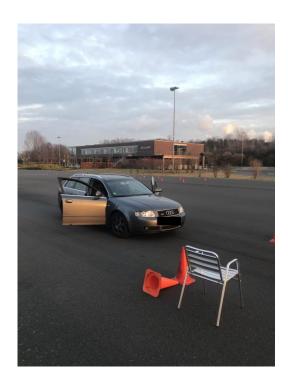




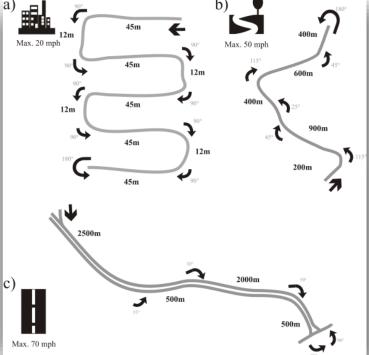
Zur transparenten und reproduzierbaren Beurteilung der Fahreignung/Fahrtauglichkeit in der Orthopädie & Unfallchirurgie ist eine Gelenkbezogene Einteilung in die folgenden Kategorien sinnvoll:

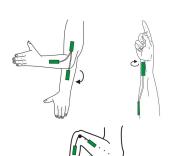
- I) Bewegungsumfang
- II) Kraft





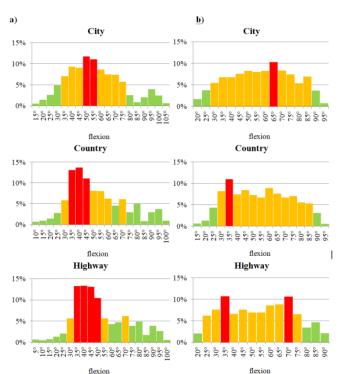
Elektrogoniometer zur "Real Time" Bestimmung des Bewegungsumfangs während des Autofahrens





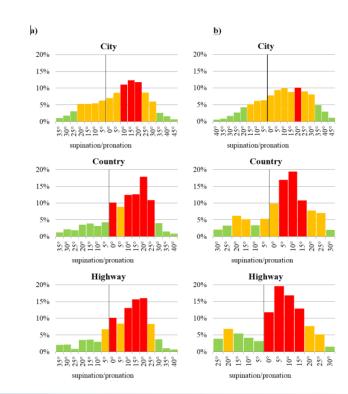
Grundlagen schaffen:

- gesunde Probanden
- kontinuierlich (50/s) Messung während des Autofahrens (Schaltgetriebe, Linkslenker-Fahrzeug)
- Stadtstraßen, II) Landstraßen und III) Autobahnen



Ellenbogen

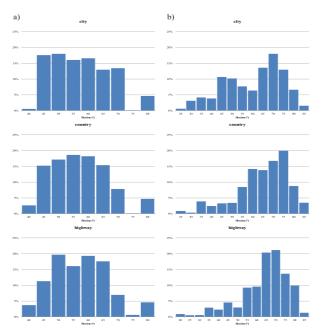
Bewegungsumfang


Extension / Flexion:

Rechts: 0-5-105°; Links: 0-20-95°

Supination / Pronation:

Rechts: 35-0-45°, Links: 40-0-45°



Kniegelenk

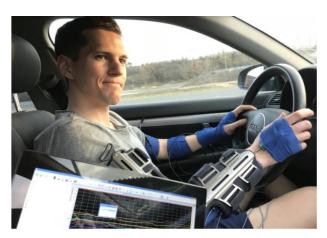
I. Bewegungsumfang Flexion:

Rechts: 40 bis 80°; Links: 20-85°

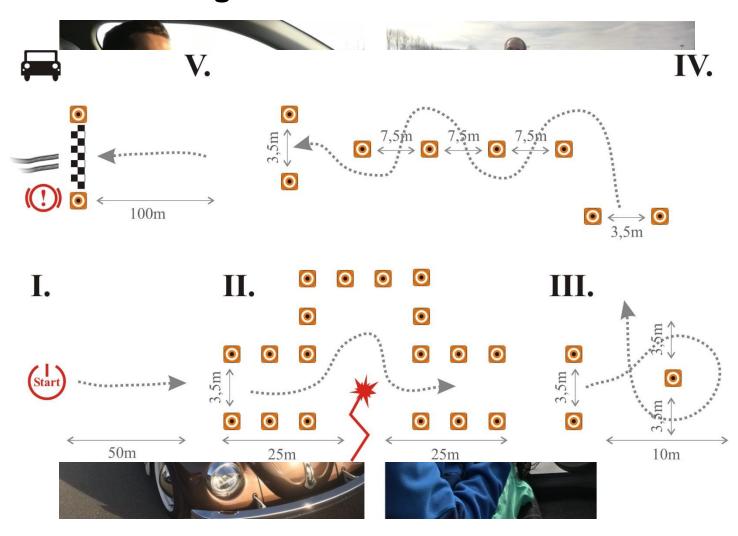
II. Signifikant höhere Flexion und ein signifikant größeres Bewegungsausmaß im linken Kniegelenk (Nutzung der Kupplung)

Limitationen:

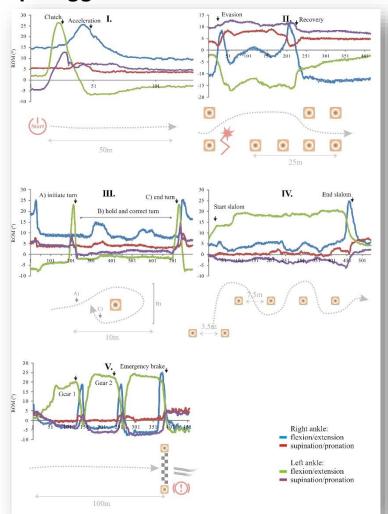
Grundlagenergebnisse sind nur quantitativ, daher die Frage:

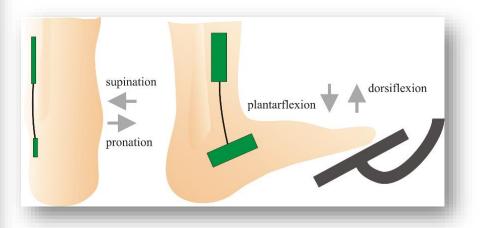

Welches Manöver ist für welches Bewegungsausmaß verantwortlich?

Weiter ins Detail gehen:



Weiter ins Detail gehen:

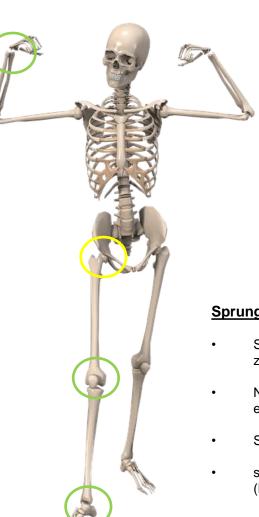




Grundlagen- Erste Ergebnisse

Sprunggelenk

Grundlagen- Erste Ergebnisse



Handgelenk

- Bewegungsausmaß in den Hauptbewegungsachsen wird vollständig genutzt.
- Extrempositionen sind häufig
- Extension und Ulnarabduktion werden signifikant häufiger und über das aktive Bewegungsausmaß hinaus genutzt.

Kniegelenk

Signifikant höhere Flexion und ein signifikant größeres Bewegungsausmaß im linken Kniegelenk (Nutzung der Kupplung)

Sprunggelenk

- Signifikant höhere Extension rechts (Wechsel zwischen Gas und Bremspedal)
- Notwendigkeit einer freien Extension zum Führen eines Kraftfahrzeugs.
- signifikant größere Bewegungsausmaß links (Nutzung der Kupplung)

Grundlagen- Erste Ergebnisse

Kompensationsmöglichkeiten?

Einzigartige Kombination aus

Aktuelle Studien

Arbeitsgruppen:

- 1) TEAM-ROM = simulierte Blockaden / Bewegungskompensation / kinematische Ketten
- 2) TEAM-KRAFT = simulierte Kraftminderung / Kompensation

Dissertationen:

- 1) Benötigen wir das linke Bein für Automatikautos?
- 2) Leitungsanästhesie in der Zahnmedizin & MKG

Einschlusskriterien je Studie:

- 20 gesunde Probanden
- Führerscheinklasse B
- >5000 km/Jahr
- Rechtshänder

Wie passen Fahrleistung und Biomechanik nun zusammen?

→ neue Studien zur weiteren Abklärung müssen her!

Messung der Biomechanik / Kompensation

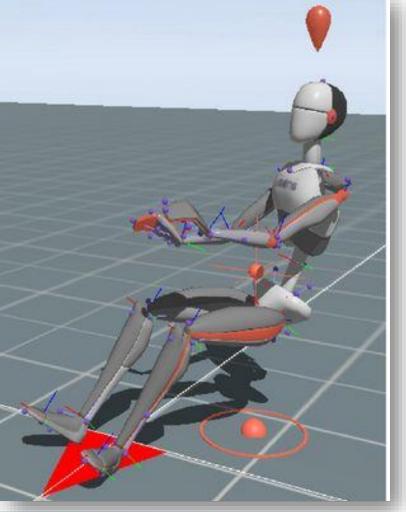
Standardisierte Gelenkblockaden (rechts)

UKD Universitätsklinikum Düsseldorf

Neue Studien

Messpunkte der Biomechanik/ Kompensation Studie:

- Messung der Fahrleistung
 - Spurhalten
 - Geschwindigkeit
 - Schaltzeit


- Bewegungsausmaße der oberen Extremität, Hüftgelenk und der Wirbelsäule
- Mögliche Kompensationsmechanismen

Synchronisierte Messung

Standardisierte Fahrmanöver im Simulator für Obere Extremität

I. Schaltung

II. Linkskurven

III. Rechtskurven

Take home Handgelenk

- Fahrleistung nicht beeinträchtigt
- Richtung der Kurve bestimmt Kompensation
- Schaltung wird durch eine veränderte Haltung der rechten Schulter, des rechten Ellenbogengelenkes und der Wirbelsäule kompensiert

Take home Ellenbogengelenk

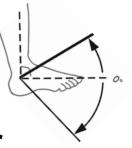
- Fahrleistung bei Rechtskurven signifikant langsamer
- Kurvenfahrten werden über die rechte Schulter kompensiert
- Schaltung zeigt eine Kompensation über den linken Ellenbogen und beide Schultern

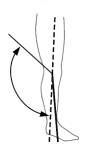
Take home Schultergelenk

- Schlangenlinie zur Gegenseite (!) beim Schalten (bei gleichem Tempo)
- Rechtskurven signifikant langsamer und Rechtsdrang.
- Versuch der Kompensation über Haltungsänderung:
 - Wirbelsäule, Hüftgelenk, rechtes Handgelenk sowie beider Ellenbogen

Messpunkte der Biomechanik unter Kraftgradminderung der unteren Extremität

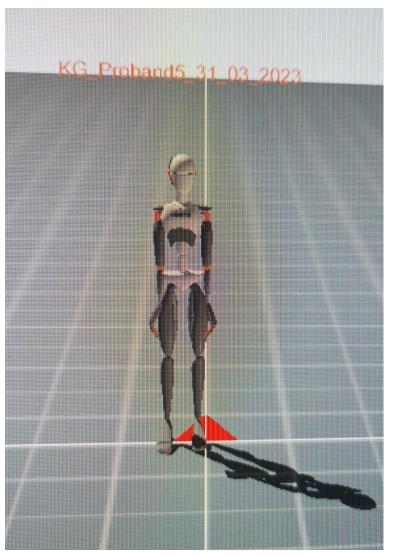
- Fahrleistung
 - Gefahrenbremsung
 - Abstand halten
- Bewegungsausmaße der unteren Extremität
- mögliche Kompensationsmechanismen

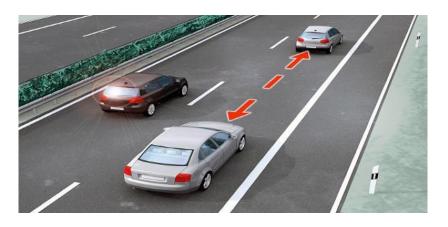



Standardisierte Kraftminderung (rechts)

- 1) Fußheber
- 2) Fußsenker

4) Kniestrecker


Kraftgrade nach Janda: <3/5, 3/5, 5/5



Standardisierte Fahrmanöver im Simulator für untere Extremität

Simulation Fahren mit einem Bandscheibenvorfall

I. Gefahrenbremsung

II. Stop & Go

Take Home Kraft untere Extremität

- Fußsenkerschwäche beeinträchtigt die Fahrleistung bei Stop & Go Fahrten
- Fußheberschwäche beeinträchtigt die Fahrleistung sowohl beim Notbremsmanöver als auch bei Stop & Go Fahrten
- Evaluation der Kompensationsmechanismen aktuell in der Auswertung

Fahrtraining

Treffen Sie uns am Live-Stand 14.00-14.45 Uhr und ab 16.30 Uhr